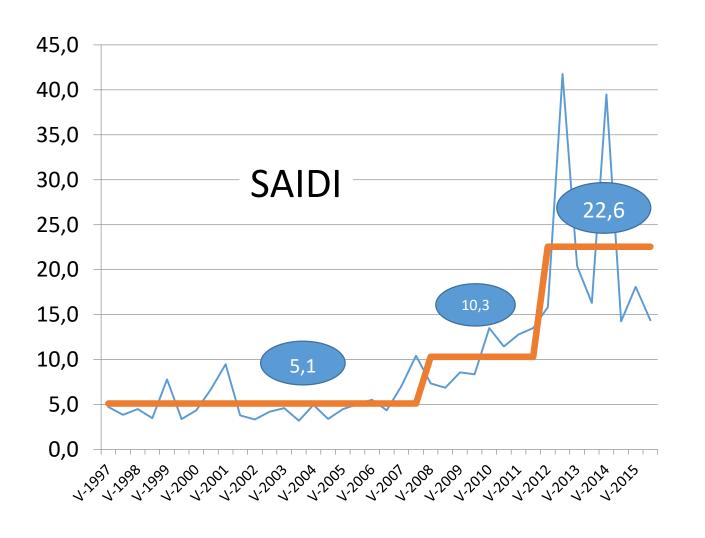
SEGUNDO ENCUENTRO CHILENO-ARGENTINO SOBRE INTEGRACION ENERGETICA

NECESIDADES PARA LA INTEGRACION ENERGETICA

Mensaje de INICIO


Normalización e Integración son los conceptos fuertes que están en las bases del **CAMBIO SECTORIAL** de Argentina

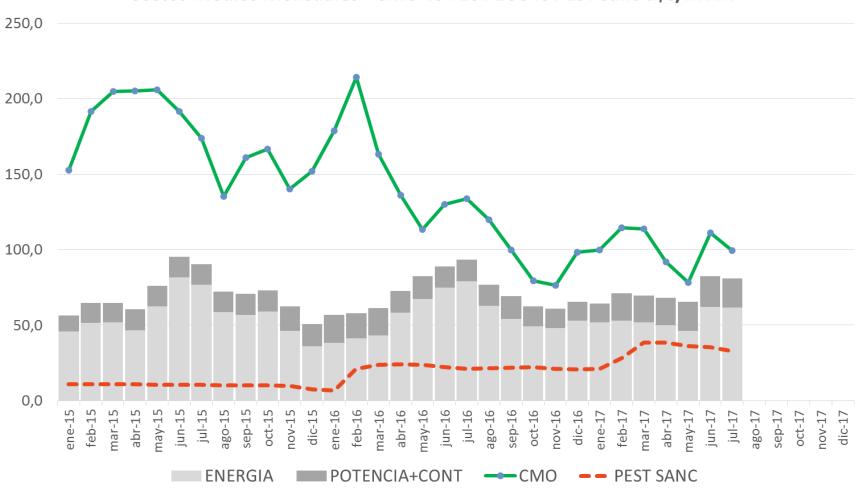

Los **DESAFÍOS** que disparan la evolución tecnológica son **enormes**: el futuro es el cambio y nuestra gestión pretende preparar al sector para **competir** y **capitalizar** las oportunidades

La INTEGRACIÓN es una oportunidad, y empieza por el diálogo abierto, comprometido y por las acciones conducentes

Motivaciones del Cambio – El DETERIORO de la Calidad

- Cambios en el modelo de subsidios generalizados; volver a las señales económicas correctas a la oferta y a la demanda
 - Cambios en las relaciones entre los actores (regulador y regulados); volver a los espacios propios sin cogestión ni captura (política ni económica)
- Cambios en los mecanismos de formación de precios: volver a la competencia y a la transparencia; inversión de riesgo privada
- Cambios en las decisiones de inversión, en la ejecución y en los incentivos; cambios en la alocación de los riesgos

Resultados de la Gestión


Camino hacia la Normalización

Normalización de Precios mayoristas

Costos Medios Mensuales - CMO vs PEST ECOvs PEST sanc u\$s/MWh

Cobertura PEST

2015 => 15%

2016 => 30%

2017 => 46%

Tarifa social reducida para 30% de los usuarios residenciales

Cambios en la Conducta de Pago en el MEM

Porcentaje Cobranza a Distribuidores

% COBRANZA

Prom 2015 45%

Prom 2016 73%

Prom 2017 87%

Mejoras de la Disponibilidad Térmica

Principales Variables MEM	Unidades	ENE-AGO 2016	ENE-AGO 2017	Diferencia
Total Disponibilidad TERMICA	%	78%	84%	8,5%
Ciclos Combinados	%	86%	88%	1,6%
Motor Diesel	%	89%	91%	1,9%
Turbina a gas	%	82%	81%	-1,7%
Turbovapor	%	51%	79%	53,8%

Normalización de las Concesiones – Percepción de la Calidad

EVALUACIÓN DEL DESEMPEÑO DEL SISTEMA DE DISTRIBUCIÓN DE ENERGÍA ELÉCTRICA DE EDENOR Y EDESUR DURANTE LOS VERANOS 2016-2017

Cortes del suministro a los usuarios (se excluyen para ambos veranos los cortes de menos de 3 minutos y aquellos derivados de tormentas severas, incendios en la Patagonia, fallas en líneas de transmisión y de generación en usinas)

Promedio diario de usuarios afectados por fallas en Media Tensión			Promedio de duración (en horas) de los cortes a los usuarios por fallas en Media Tensión		
	Dic/2015 Ene-Feb/2016	Dic/2016 Ene-Feb/2017		Dic/2015 Ene-Feb/2016	Dic/2016 Ene-Feb/2017
EDENOR	42.407	33.559	EDENOR	1,80	1,85
EDESUR	46.877	43.992	EDESUR	2,36	2,33
Total	89.284	77.551	Total	2,08	2,09
COMPARACIÓN -13%		COMPARACIÓN 0%		%	

Promedio diario de usuarios afectados por fallas en Baja Tensión			Prome	Promedio de duración (en horas) de los cortes a los usuarios por fallas en Baja Tensión		
	Dic/2015 Ene-Feb/2016	Dic/2016 Ene-Feb/20	17	Dic/2015 Ene-Feb/2016	Dic/2016 Ene-Feb/2017	
EDENOR	4.380	2.8	50 EDENOR	27,7	15,9	
EDESUR	5.880	3.1	00 EDESUR	31,4	37,8	
Total	10.250	5.9	50 Total	29,6	26,9	
COMPARACIÓ	-A	12%	COMPARACIÓN	-9	%	

Reducción de Cortes -34%

TEMPERATURA					
Verano 2015/20	16 Ve	erano 2016/2017			
24,6 ºC	Vs.	25,2 ºC			
+2%					

	Récord de DEMANDA (en MegaWatts) - MW				
ľ	2016	2017			
	(16/Feb) 9.533 MW	(23/Feb) 9.614 MW			
	(12/Feb) 9.509 MW	(21/Feb) 9.694 MW			

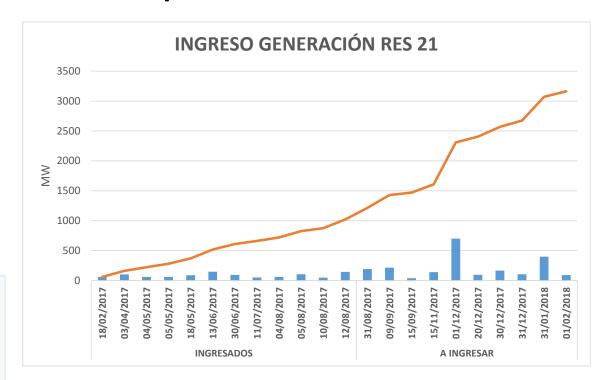
Total de usuarios atendidos por EDENOR y EDESUR 5.287.542

Nuevas Inversiones para enfrentar al futuro

Un cambio de cultura

Recuperando Reservas Flexibles en Generación

- Licitación abierta nueva oferta térmica, con CEM < 2500 kcal/kWh.
 - Tecnología, combustibles y fecha de E/S comprometidos
- Financiación propia; oferta de costo de potencia y costo variable en contratos a plazo


MOTOGENERADORES

7 Proyectos → 520 MW

TURBINAS A GAS

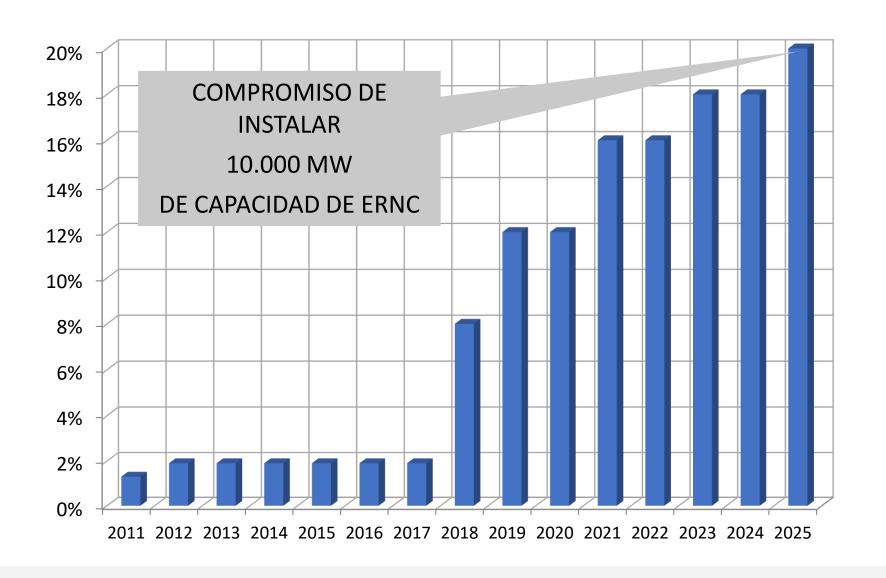
22 proyectos → 2643 MW

3.163 MW adjudicados

61

Ofertas principales

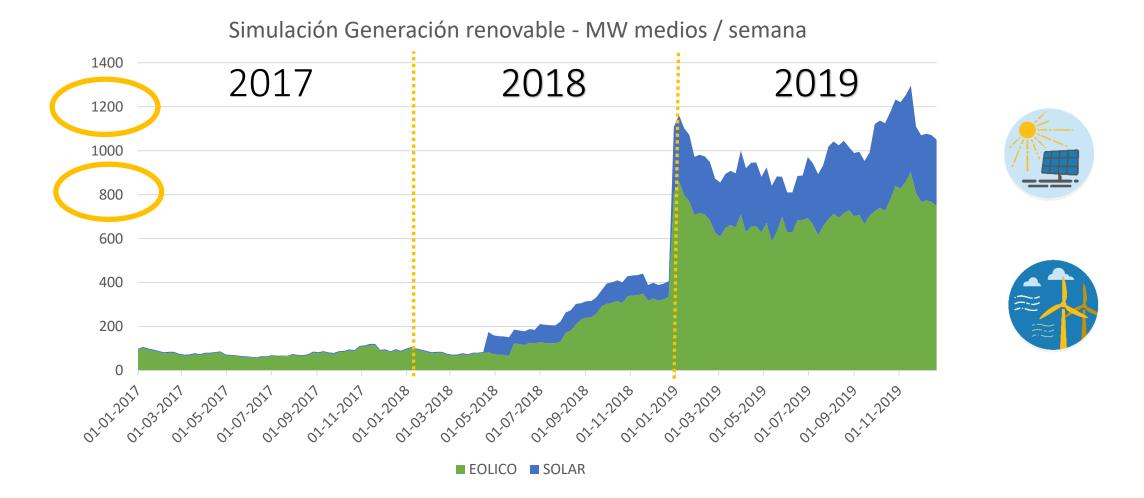
24


Grupos Empresarios

6.607 MW

Potencia Ofrecida

Estrategia para el cambio de la Matriz Energética


Inversiones en Energías Renovables – Adjudicaciones 2016

RONDA	Tecnología	CANTIDAD	POTENCIA [MW]	PO MIN [u\$s/MWh]	PO MEDIO [u\$s/MWh]
	EOL	12	707	49.1	59.4
	SFV	4	400	59.0	59.7
1	BM	2	15	110.0	114.6
	BG	6	9	118.0	177.8
	PAH	5	5	111.1	118.3
	TOTAL	29	1.136		61.4
	EOL	10	765	46.0	53.3
1.5	SFV	20	516	48.0	55.0
	TOTAL	30	1.282		51.0
TOTAL		59	2.417		57.5

Inversiones en Energías Renovables - Operación esperada

Inversiones Privadas 3ra etapa – Manifestaciones de Interés

Alt	TIPO	CANTIDAD	POTENCIA MW	POTENCIA MW/propuesta
Α	Ciclo Combinado Nuevo	32	22.510	703
В	Cierre de Ciclo Combinado	24	3.199	133
С	Turbina a Gas / Cogeneración	89	9.124	103
D	Combustible Alternativo	20		
Е	Ductos y Gestión de Líquidos	10		
F	Transporte 500 kV	9		
G	Eficiencia Turbina a Gas/ Otros	12	6	
	TOTAL	196	34.839	

TIPO	#	Potencia Total (MW)	Cargo Fijo Medio (u\$s/MWmes)	Cargo Variable No Combustible Medio (u\$s/MWh)
Cierre CC	17	1.816	24.208	21,3
Cogeneración	16	2.241	28.278	6,3
Total	33	4.057	26.457	13,0

Desafíos y Oportunidades del Futuro

Integración en el Cono Sur

Posibilidades y Oportunidades

- Desafíos de la gestión de recursos intermitentes (renovables no convencionales): el almacenamiento económico
 - Desarrollo de un **sistema de trasmisión** en armonía con la apuesta a las intermitentes y de cara a los desafíos de gestión
 - Integración del Cono Sur como ámbito de oportunidades; independencia de cada uno de los países y seguridad energética, intercambios de oportunidad basados en la confianza técnica; desarrollo de los vínculos físicos

Desafíos de los Recursos Primarios INTERMITENTES / ERNC

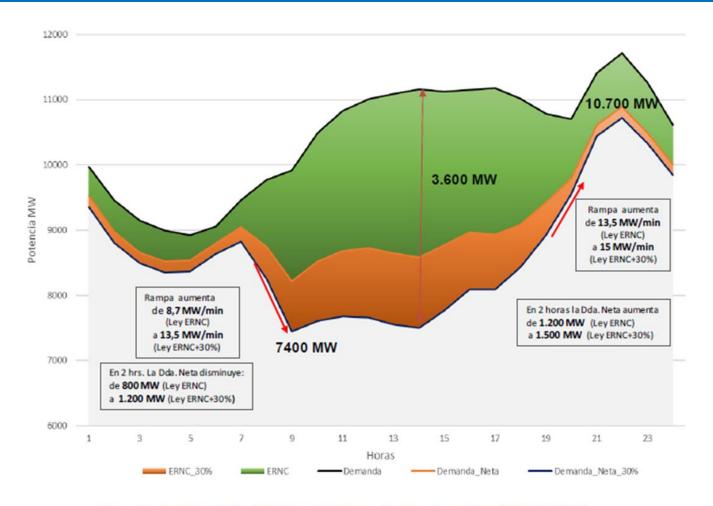


Figura 15. Caracterización de la demanda para un día de verano, 01 de febrero de 2021.

Fuente: Informe estudio ERNC flexibilidad y sistemas de almacenamiento en el Sistema Eléctrico Nacional en el año 2021, (CDEC-SING 2016).

«Costos por perfil irregular de generación:

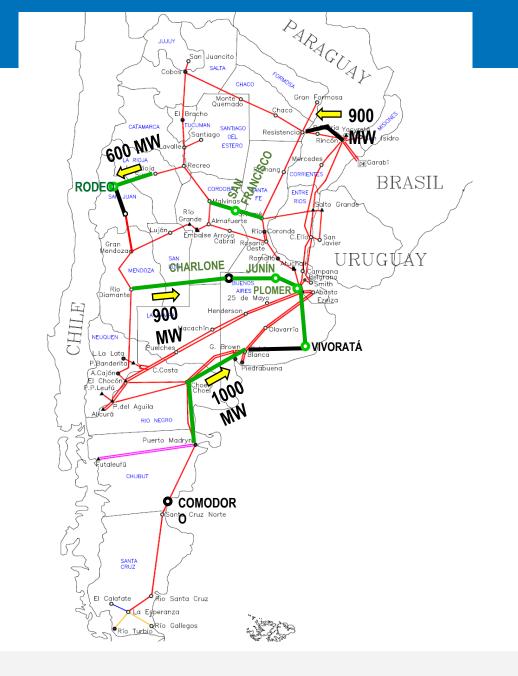
la excesiva variabilidad de la generación ERNC, deja una demanda residual que requiere que las centrales convencionales sean más flexibles»

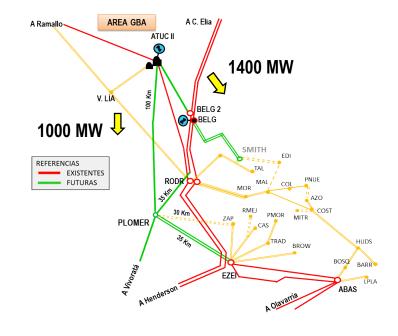
 $\wedge \rightarrow \Delta + Ramplas de entrada/salida >$

«Costos por balanceo: La poca capacidad de predicción de la generación ERNC»
«→ Λ+ Reservas del sistema»

«Costos de red: Las plantas ERNC distantes requieren una red más robusta»

« → Δ+ Inversión en transmisión»


Plan del Transporte Eléctrico – Necesidades



DESCRIPCION	LEAT (km)	Transformación (MVA)	Inversión (MM U\$D)
LEAT RIO DIAMANTE/CHARLONE + ET CHARLONE	490	600	480
LEAT ATUCHA / BELGRANO II + ET BELGRANO II	35		80
LEAT BELGRANO II / SMITH + ET SMITH	100	1.600	170
LEAT ATUCHA II / PLOMER + ET PLOMER + DOBLE LEAT 35 km (anillo GBA)	130	800	190
LEAT CHARLONE / JUNÍN / PLOMER + ET JUNIN	415	600	420
LEAT PTO MADRYN / CHOELE CHOEL + LEAT VIVORATÁ / PLOMER	705		600
LEAT RODEO / LA RIOJA SUR + ET RODEO + ET LA RIOJA SUR	300	300	300
LEAT CHOELE CHOEL / BAHÍA BLANCA	340		290
LEAT SANTO TOMÉ / SAN FRANCISCO / MALVINAS + ET SAN FRANCISCO	310	450	320
TOTAL	2.825	4.350	2.850

Evaluación

- La transformación y los Cambios están en marcha; el cambio tecnológico derrumba paradigmas y crea nuevos a su propio ritmo
- En el contexto del cambio, las oportunidades de integración y complementariedad son enormes; el desafío es transformarlas en hechos con beneficios compartidos
- La base es el entendimiento y la confianza; el buen diálogo técnico y los acuerdos sobre bases racionales y duraderas

Gracias por su atención

